Week 3

3.1 Dihedral groups

Consider the subset 7 of transformations of R?, consisting of all rotations by fixed
angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P, with n sides in R?, centered at the origin. Iden-
tify the polygon with its n vertices, which form a subset P, = {z1, xs,...,x,} of
R2 If 7(P,) = P, for some 7 € T, we say that P, is symmetric with respect to
T.

Intuitively, it is clear that P, is symmetric with respect to n rotations

{ro,m,...,Tn-1},
and n reflections
{s1,89,..., 8}
in 7. In particular | D,,| = 2n.
Proposition 3.1.1. The set D,, := {ro,r1,...,Tn_1,81,52,...,8a} is a group,

with respect to the group operation defined by composition of transformations:
TkYy=TO".

Terminology: D, is called the n-th dihedral group.

Letr = r; € D, be the rotation by the angle 27 /n in the anticlockwise direc-
tion (and similarly r;, denotes the rotation by the angle 2k /n in the anticlockwise
direction). Then the set of rotations in D,, is given by

(ry = {id,r,7*, ..., "'}

Furthermore, the composition of two reflections is a rotation (which can be seen,
e.g. by flipping a Hong Kong 2-dollar coin). So if we let s = s; € D,, be one of
the reflections, then the set of reflections in D, is given by

{s,rs,r%s, ..., 7" s},
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So we can enumerate the elements of D,, as

D, = {id,r,r* ... ,r" ' s,rs,r%s,...,r" s}

3.2 Subgroups

Definition. Let G be a group. A subset H of G is a subgroup of G (denoted as
H < G) if it is a group under the induced operation from G.

More precisely, a subset H C G is a subgroup of G if

e H is closed under the operation on G, i.e.
axbe Hforanya,be H,

so that the restriction of the binary operation G x G — G to the subset
H x H C G x G gives a well-defined binary operation H x H — H, called
the induced operation on H, and

e /1 is a group under this induced operation.

Example 3.2.1. e For any group G, we have the trivial subgroup {e} < G
and also G < G. We call a subgroup H < G nontrivial if {¢} < H and
proper if H S G.

e We have Z < Q < R < C under addition, and Q* < R* < C* under
multiplication.

e For any n € Z, nZ is a subgroup of (Z, +).
e SL(n,R) is a subgroup of GL(n, R).

e The set of all rotations (including the trivial rotation) in a dihedral group D,,
is a subgroup of D,,.

e By viewing D,, as permutations of the vertices of a regular n-gon F,, we
can regard D,, as a subgroup of .5,,.

e Consider the symmetric group S,, where n € Z.

Proposition 3.2.2. Each element of \S,, is a product of (not necessarily dis-
joint) transpositions.
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Sketch of proof. Show that each permutation not equal to the identity is a
product of cycles, and that each cycle is a product of transpositions:

(dnig -« - i) = (ivix) (drig—1) - - - (i123) (4172)

Example 3.2.3.

(33507 %) 0960 - 190 = 0960

Note that a given element o of .S, may be expressed as a product of trans-
positions in different ways, but:

Proposition 3.2.4. In every factorization of o as a product of transpositions,
the number of factors is either always even or always odd.

Proof. Exercise. One approach: There is a unique n X n matrix, with ei-
ther 0 or 1 as its coefficients, which sends any vector (xy,zs,...,2,) to
(To(1), Zo(2), - - - s To(n)). Use the fact that the determinant of the matrix cor-
responding to a transposition is —1, and that the determinant function of
matrices i1s multiplicative. [

We say that 0 € S, is an even (resp. odd) permutation if it is a product
of an even (resp. odd) number of transpositions. The subset A, of S,
consisting of even permutations is a subgroup of 5,,. A, is called the n-th
alternating group.

Proposition 3.2.5. A nonempty subset H of a group G is a subgroup of G if and
only if, for all a,b € H, we have ab=' € H.

Proof. Suppose H C (' is a subgroup. For any a,b € H, existence of inverse
implies that b~! € H, and then closedness implies that ab™! € H.

Conversely, suppose H is a nonempty subset of G such that xyy~! € H for all
x,y € H.

o (Identity:) Let e be the identity element of (G. Since H is nonempty, it
contains at least one element h. Since e = h - h™!, and by hypothesis
h-h~' € H, the set H contains e.

e (Inverses:) Since e € H,foralla € H wehavea ' =¢-a" ! € H.

e (Closure:) For all a,b € H, we know that b~! € H. Hence, ab = a -
(bt eH.
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e (Associativity:) This follows from that in G.
Hence, H is a subgroup of G. [

One can use this criterion to check that all the previous examples are indeed
subgroups.

3.3 Cyclic subgroups

Recall that for any group GG and any element g € G, we have the subset

(9) =1{9" :n €Z}.

Proposition 3.3.1. Let G be a group. Then for any element g € G, the subset (g)
is the smallest subgroup of G containing g, which we call the cyclic subgroup
generated by g.

Proof. Let g*, g' be two arbitrary elements in (g). Then ¢*(¢')~* = ¢*~! € (g).
So (g) is a subgroup of GG by Proposition 3.2.5.

Now let H < G be any subgroup containing g. Then ¢* € H for any k € Z
since H is a subgroup. Hence (g) C H. O

Proposition 3.3.2. The intersection of any collection of subgroups of a group G
is also a subgroup of G.

Proof. Exercise. ]

Corollary 3.3.3. Let G be a group. Then for any g € G, we have

o= () H

{H:gcH<G}
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