Week 3

3.1 Dihedral groups

Consider the subset \mathcal{T} of transformations of \mathbb{R}^2 , consisting of all rotations by fixed angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P_n with n sides in \mathbb{R}^2 , centered at the origin. Identify the polygon with its n vertices, which form a subset $P_n = \{x_1, x_2, \ldots, x_n\}$ of \mathbb{R}^2 . If $\tau(P_n) = P_n$ for some $\tau \in \mathcal{T}$, we say that P_n is **symmetric** with respect to τ .

Intuitively, it is clear that P_n is symmetric with respect to n rotations

$$\{r_0, r_1, \ldots, r_{n-1}\},\$$

and n reflections

$$\{s_1, s_2, \ldots, s_n\}$$

in \mathcal{T} . In particular $|D_n| = 2n$.

Proposition 3.1.1. The set $D_n := \{r_0, r_1, \ldots, r_{n-1}, s_1, s_2, \ldots, s_n\}$ is a group, with respect to the group operation defined by composition of transformations: $\tau * \gamma = \tau \circ \gamma$.

Terminology: D_n is called the *n*-th dihedral group.

Let $r = r_1 \in D_n$ be the rotation by the angle $2\pi/n$ in the anticlockwise direction (and similarly r_k denotes the rotation by the angle $2k\pi/n$ in the anticlockwise direction). Then the set of rotations in D_n is given by

$$\langle r \rangle = \{ \mathrm{id}, r, r^2, \dots, r^{n-1} \}.$$

Furthermore, the composition of two reflections is a rotation (which can be seen, e.g. by flipping a Hong Kong 2-dollar coin). So if we let $s = s_1 \in D_n$ be one of the reflections, then the set of reflections in D_n is given by

$$\{s, rs, r^2s, \dots, r^{n-1}s\}$$

So we can enumerate the elements of D_n as

$$D_n = \{ \mathrm{id}, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s \}.$$

3.2 Subgroups

Definition. Let G be a group. A subset H of G is a **subgroup** of G (denoted as H < G) if it is a group under the induced operation from G.

More precisely, a subset $H \subset G$ is a subgroup of G if

• *H* is *closed* under the operation on *G*, i.e.

 $a * b \in H$ for any $a, b \in H$,

so that the restriction of the binary operation $G \times G \to G$ to the subset $H \times H \subset G \times G$ gives a well-defined binary operation $H \times H \to H$, called the *induced operation* on H, and

- *H* is a group under this induced operation.
- **Example 3.2.1.** For any group G, we have the trivial subgroup $\{e\} < G$ and also G < G. We call a subgroup H < G nontrivial if $\{e\} \leq H$ and proper if $H \leq G$.
 - We have $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ under addition, and $\mathbb{Q}^{\times} < \mathbb{R}^{\times} < \mathbb{C}^{\times}$ under multiplication.
 - For any $n \in \mathbb{Z}$, $n\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$.
 - $SL(n, \mathbb{R})$ is a subgroup of $GL(n, \mathbb{R})$.
 - The set of all rotations (including the trivial rotation) in a dihedral group D_n is a subgroup of D_n .
 - By viewing D_n as permutations of the vertices of a regular *n*-gon P_n , we can regard D_n as a subgroup of S_n .
 - Consider the symmetric group S_n where $n \in \mathbb{Z}_{>0}$.

Proposition 3.2.2. Each element of S_n is a product of (not necessarily disjoint) transpositions.

Sketch of proof. Show that each permutation not equal to the identity is a product of cycles, and that each cycle is a product of transpositions:

$$(i_1i_2\cdots i_k) = (i_1i_k)(i_1i_{k-1})\cdots (i_1i_3)(i_1i_2)$$

Example 3.2.3.

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 6 & 1 & 2 \end{pmatrix} = (15)(246) = (15)(26)(24) = (15)(46)(26)$

Note that a given element σ of S_n may be expressed as a product of transpositions in different ways, but:

Proposition 3.2.4. In every factorization of σ as a product of transpositions, the number of factors is either always even or always odd.

Proof. Exercise. One approach: There is a unique $n \times n$ matrix, with either 0 or 1 as its coefficients, which sends any vector (x_1, x_2, \ldots, x_n) to $(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$. Use the fact that the determinant of the matrix corresponding to a transposition is -1, and that the determinant function of matrices is multiplicative.

We say that $\sigma \in S_n$ is an **even** (resp. **odd**) **permutation** if it is a product of an even (resp. odd) number of transpositions. The subset A_n of S_n consisting of even permutations is a subgroup of S_n . A_n is called the *n*-th **alternating group**.

Proposition 3.2.5. A nonempty subset H of a group G is a subgroup of G if and only if, for all $a, b \in H$, we have $ab^{-1} \in H$.

Proof. Suppose $H \subseteq G$ is a subgroup. For any $a, b \in H$, existence of inverse implies that $b^{-1} \in H$, and then closedness implies that $ab^{-1} \in H$.

Conversely, suppose H is a nonempty subset of G such that $xy^{-1} \in H$ for all $x, y \in H$.

- (Identity:) Let e be the identity element of G. Since H is nonempty, it contains at least one element h. Since e = h ⋅ h⁻¹, and by hypothesis h ⋅ h⁻¹ ∈ H, the set H contains e.
- (Inverses:) Since $e \in H$, for all $a \in H$ we have $a^{-1} = e \cdot a^{-1} \in H$.
- (Closure:) For all $a, b \in H$, we know that $b^{-1} \in H$. Hence, $ab = a \cdot (b^{-1})^{-1} \in H$.

• (Associativity:) This follows from that in G.

Hence, H is a subgroup of G.

One can use this criterion to check that all the previous examples are indeed subgroups.

3.3 Cyclic subgroups

Recall that for any group G and any element $g \in G$, we have the subset

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.$$

Proposition 3.3.1. Let G be a group. Then for any element $g \in G$, the subset $\langle g \rangle$ is the smallest subgroup of G containing g, which we call the **cyclic subgroup** generated by g.

Proof. Let g^k, g^l be two arbitrary elements in $\langle g \rangle$. Then $g^k(g^l)^{-1} = g^{k-l} \in \langle g \rangle$. So $\langle g \rangle$ is a subgroup of G by Proposition 3.2.5.

Now let H < G be any subgroup containing g. Then $g^k \in H$ for any $k \in \mathbb{Z}$ since H is a subgroup. Hence $\langle g \rangle \subset H$.

Proposition 3.3.2. The intersection of any collection of subgroups of a group G is also a subgroup of G.

Proof. Exercise.

Corollary 3.3.3. *Let* G *be a group. Then for any* $g \in G$ *, we have*

$$\langle g \rangle = \bigcap_{\{H:g \in H < G\}} H.$$